Metamath Proof Explorer


Definition df-seqs

Description: Define a general-purpose sequence builder for surreal numbers. Compare df-seq . Note that in the theorems we develop here, we do not require M to be an integer. This is because there are infinite surreal numbers and we may want to start our sequence there. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion df-seqs seq s M + ˙ F = rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω

Detailed syntax breakdown

Step Hyp Ref Expression
0 cM class M
1 c.pl class + ˙
2 cF class F
3 1 2 0 cseqs class seq s M + ˙ F
4 vx setvar x
5 cvv class V
6 vy setvar y
7 4 cv setvar x
8 cadds class + s
9 c1s class 1 s
10 7 9 8 co class x + s 1 s
11 6 cv setvar y
12 10 2 cfv class F x + s 1 s
13 11 12 1 co class y + ˙ F x + s 1 s
14 10 13 cop class x + s 1 s y + ˙ F x + s 1 s
15 4 6 5 5 14 cmpo class x V , y V x + s 1 s y + ˙ F x + s 1 s
16 0 2 cfv class F M
17 0 16 cop class M F M
18 15 17 crdg class rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M
19 com class ω
20 18 19 cima class rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω
21 3 20 wceq wff seq s M + ˙ F = rec x V , y V x + s 1 s y + ˙ F x + s 1 s M F M ω