Metamath Proof Explorer


Definition df-singleton

Description: Define the singleton function. See brsingle for its value. (Contributed by Scott Fenton, 4-Apr-2014)

Ref Expression
Assertion df-singleton βŠ’π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†IβŠ—V

Detailed syntax breakdown

Step Hyp Ref Expression
0 csingle classπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡
1 cvv classV
2 1 1 cxp classVΓ—V
3 cep classE
4 1 3 ctxp classVβŠ—E
5 cid classI
6 5 1 ctxp classIβŠ—V
7 4 6 csymdif classVβŠ—Eβˆ†IβŠ—V
8 7 crn classran⁑VβŠ—Eβˆ†IβŠ—V
9 2 8 cdif classVΓ—Vβˆ–ran⁑VβŠ—Eβˆ†IβŠ—V
10 0 9 wceq wffπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†IβŠ—V