Description: Define the swap functor from ( C Xc. D ) to ( D Xc. C ) by swapping all objects ( swapf1 ) and morphisms ( swapf2 ) .
Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 or a "twist functor" in https://arxiv.org/pdf/2508.01886 , the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau ta in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 and thus not adopted here.
tpos _I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 for an alternate definition.
(Contributed by Zhi Wang, 7-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-swapf | Could not format assertion : No typesetting found for |- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cswapf | Could not format swapF : No typesetting found for class swapF with typecode class | |
| 1 | vc | ||
| 2 | cvv | ||
| 3 | vd | ||
| 4 | 1 | cv | |
| 5 | cxpc | ||
| 6 | 3 | cv | |
| 7 | 4 6 5 | co | |
| 8 | vs | ||
| 9 | cbs | ||
| 10 | 8 | cv | |
| 11 | 10 9 | cfv | |
| 12 | vb | ||
| 13 | chom | ||
| 14 | 10 13 | cfv | |
| 15 | vh | ||
| 16 | vx | ||
| 17 | 12 | cv | |
| 18 | 16 | cv | |
| 19 | 18 | csn | |
| 20 | 19 | ccnv | |
| 21 | 20 | cuni | |
| 22 | 16 17 21 | cmpt | |
| 23 | vu | ||
| 24 | vv | ||
| 25 | vf | ||
| 26 | 23 | cv | |
| 27 | 15 | cv | |
| 28 | 24 | cv | |
| 29 | 26 28 27 | co | |
| 30 | 25 | cv | |
| 31 | 30 | csn | |
| 32 | 31 | ccnv | |
| 33 | 32 | cuni | |
| 34 | 25 29 33 | cmpt | |
| 35 | 23 24 17 17 34 | cmpo | |
| 36 | 22 35 | cop | |
| 37 | 15 14 36 | csb | |
| 38 | 12 11 37 | csb | |
| 39 | 8 7 38 | csb | |
| 40 | 1 3 2 2 39 | cmpo | |
| 41 | 0 40 | wceq | Could not format swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) : No typesetting found for wff swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) with typecode wff |