Metamath Proof Explorer


Definition df-thinc

Description: Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of Adamek p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion df-thinc Could not format assertion : No typesetting found for |- ThinCat = { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cthinc Could not format ThinCat : No typesetting found for class ThinCat with typecode class
1 vc setvarc
2 ccat classCat
3 cbs classBase
4 1 cv setvarc
5 4 3 cfv classBasec
6 vb setvarb
7 chom classHom
8 4 7 cfv classHomc
9 vh setvarh
10 vx setvarx
11 6 cv setvarb
12 vy setvary
13 vf setvarf
14 13 cv setvarf
15 10 cv setvarx
16 9 cv setvarh
17 12 cv setvary
18 15 17 16 co classxhy
19 14 18 wcel wfffxhy
20 19 13 wmo wff*ffxhy
21 20 12 11 wral wffyb*ffxhy
22 21 10 11 wral wffxbyb*ffxhy
23 22 9 8 wsbc wff[˙Homc/h]˙xbyb*ffxhy
24 23 6 5 wsbc wff[˙Basec/b]˙[˙Homc/h]˙xbyb*ffxhy
25 24 1 2 crab classcCat|[˙Basec/b]˙[˙Homc/h]˙xbyb*ffxhy
26 0 25 wceq Could not format ThinCat = { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } : No typesetting found for wff ThinCat = { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } with typecode wff