Metamath Proof Explorer


Definition df-topsep

Description: A topology isseparable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-topsep TopSep = j Top | x 𝒫 j x ω cls j x = j

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctopsep class TopSep
1 vj setvar j
2 ctop class Top
3 vx setvar x
4 1 cv setvar j
5 4 cuni class j
6 5 cpw class 𝒫 j
7 3 cv setvar x
8 cdom class
9 com class ω
10 7 9 8 wbr wff x ω
11 ccl class cls
12 4 11 cfv class cls j
13 7 12 cfv class cls j x
14 13 5 wceq wff cls j x = j
15 10 14 wa wff x ω cls j x = j
16 15 3 6 wrex wff x 𝒫 j x ω cls j x = j
17 16 1 2 crab class j Top | x 𝒫 j x ω cls j x = j
18 0 17 wceq wff TopSep = j Top | x 𝒫 j x ω cls j x = j