Metamath Proof Explorer


Definition df-trpred

Description: Define the transitive predecessors of a class X under a relation R in a class A . This class can be thought of as the "smallest" class containing all elements of A that are linked to X by an R -chain (see trpredtr and trpredmintr ). Definition based on Theorem 8.4 of Don Monk's notes for Advanced Set Theory, which can be found at https://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion df-trpred TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 cX class X
3 1 0 2 ctrpred class TrPred R A X
4 va setvar a
5 cvv class V
6 vy setvar y
7 4 cv setvar a
8 6 cv setvar y
9 1 0 8 cpred class Pred R A y
10 6 7 9 ciun class y a Pred R A y
11 4 5 10 cmpt class a V y a Pred R A y
12 1 0 2 cpred class Pred R A X
13 11 12 crdg class rec a V y a Pred R A y Pred R A X
14 com class ω
15 13 14 cres class rec a V y a Pred R A y Pred R A X ω
16 15 crn class ran rec a V y a Pred R A y Pred R A X ω
17 16 cuni class ran rec a V y a Pred R A y Pred R A X ω
18 3 17 wceq wff TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω