Metamath Proof Explorer


Definition df-ttrcl

Description: Define the transitive closure of a class. This is the smallest relationship containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion df-ttrcl Could not format assertion : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 0 cttrcl Could not format t++ R : No typesetting found for class t++ R with typecode class
2 vx setvar x
3 vy setvar y
4 vn setvar n
5 com class ω
6 c1o class 1 𝑜
7 5 6 cdif class ω 1 𝑜
8 vf setvar f
9 8 cv setvar f
10 4 cv setvar n
11 10 csuc class suc n
12 9 11 wfn wff f Fn suc n
13 c0 class
14 13 9 cfv class f
15 2 cv setvar x
16 14 15 wceq wff f = x
17 10 9 cfv class f n
18 3 cv setvar y
19 17 18 wceq wff f n = y
20 16 19 wa wff f = x f n = y
21 vm setvar m
22 21 cv setvar m
23 22 9 cfv class f m
24 22 csuc class suc m
25 24 9 cfv class f suc m
26 23 25 0 wbr wff f m R f suc m
27 26 21 10 wral wff m n f m R f suc m
28 12 20 27 w3a wff f Fn suc n f = x f n = y m n f m R f suc m
29 28 8 wex wff f f Fn suc n f = x f n = y m n f m R f suc m
30 29 4 7 wrex wff n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m R f suc m
31 30 2 3 copab class x y | n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m R f suc m
32 1 31 wceq Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } : No typesetting found for wff t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode wff