Metamath Proof Explorer


Definition df-ttrcl

Description: Define the transitive closure of a class. This is the smallest relation containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion df-ttrcl Could not format assertion : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 cttrcl Could not format t++ R : No typesetting found for class t++ R with typecode class
2 vx setvarx
3 vy setvary
4 vn setvarn
5 com classω
6 c1o class1𝑜
7 5 6 cdif classω1𝑜
8 vf setvarf
9 8 cv setvarf
10 4 cv setvarn
11 10 csuc classsucn
12 9 11 wfn wfffFnsucn
13 c0 class
14 13 9 cfv classf
15 2 cv setvarx
16 14 15 wceq wfff=x
17 10 9 cfv classfn
18 3 cv setvary
19 17 18 wceq wfffn=y
20 16 19 wa wfff=xfn=y
21 vm setvarm
22 21 cv setvarm
23 22 9 cfv classfm
24 22 csuc classsucm
25 24 9 cfv classfsucm
26 23 25 0 wbr wfffmRfsucm
27 26 21 10 wral wffmnfmRfsucm
28 12 20 27 w3a wfffFnsucnf=xfn=ymnfmRfsucm
29 28 8 wex wffffFnsucnf=xfn=ymnfmRfsucm
30 29 4 7 wrex wffnω1𝑜ffFnsucnf=xfn=ymnfmRfsucm
31 30 2 3 copab classxy|nω1𝑜ffFnsucnf=xfn=ymnfmRfsucm
32 1 31 wceq Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } : No typesetting found for wff t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode wff