Description: Define the transitive closure of a class. This is the smallest relation containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ttrcl | Could not format assertion : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | |
|
1 | 0 | cttrcl | Could not format t++ R : No typesetting found for class t++ R with typecode class |
2 | vx | |
|
3 | vy | |
|
4 | vn | |
|
5 | com | |
|
6 | c1o | |
|
7 | 5 6 | cdif | |
8 | vf | |
|
9 | 8 | cv | |
10 | 4 | cv | |
11 | 10 | csuc | |
12 | 9 11 | wfn | |
13 | c0 | |
|
14 | 13 9 | cfv | |
15 | 2 | cv | |
16 | 14 15 | wceq | |
17 | 10 9 | cfv | |
18 | 3 | cv | |
19 | 17 18 | wceq | |
20 | 16 19 | wa | |
21 | vm | |
|
22 | 21 | cv | |
23 | 22 9 | cfv | |
24 | 22 | csuc | |
25 | 24 9 | cfv | |
26 | 23 25 0 | wbr | |
27 | 26 21 10 | wral | |
28 | 12 20 27 | w3a | |
29 | 28 8 | wex | |
30 | 29 4 7 | wrex | |
31 | 30 2 3 | copab | |
32 | 1 31 | wceq | Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } : No typesetting found for wff t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode wff |