Metamath Proof Explorer


Theorem ttrcleq

Description: Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion ttrcleq Could not format assertion : No typesetting found for |- ( R = S -> t++ R = t++ S ) with typecode |-

Proof

Step Hyp Ref Expression
1 breq R = S f m R f suc m f m S f suc m
2 1 ralbidv R = S m n f m R f suc m m n f m S f suc m
3 2 3anbi3d R = S f Fn suc n f = x f n = y m n f m R f suc m f Fn suc n f = x f n = y m n f m S f suc m
4 3 exbidv R = S f f Fn suc n f = x f n = y m n f m R f suc m f f Fn suc n f = x f n = y m n f m S f suc m
5 4 rexbidv R = S n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m R f suc m n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m S f suc m
6 5 opabbidv R = S x y | n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m R f suc m = x y | n ω 1 𝑜 f f Fn suc n f = x f n = y m n f m S f suc m
7 df-ttrcl Could not format t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } : No typesetting found for |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } with typecode |-
8 df-ttrcl Could not format t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } : No typesetting found for |- t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } with typecode |-
9 6 7 8 3eqtr4g Could not format ( R = S -> t++ R = t++ S ) : No typesetting found for |- ( R = S -> t++ R = t++ S ) with typecode |-