Metamath Proof Explorer


Definition df-usp

Description: Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion df-usp UnifSp=f|UnifStfUnifOnBasefTopOpenf=unifTopUnifStf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cusp classUnifSp
1 vf setvarf
2 cuss classUnifSt
3 1 cv setvarf
4 3 2 cfv classUnifStf
5 cust classUnifOn
6 cbs classBase
7 3 6 cfv classBasef
8 7 5 cfv classUnifOnBasef
9 4 8 wcel wffUnifStfUnifOnBasef
10 ctopn classTopOpen
11 3 10 cfv classTopOpenf
12 cutop classunifTop
13 4 12 cfv classunifTopUnifStf
14 11 13 wceq wffTopOpenf=unifTopUnifStf
15 9 14 wa wffUnifStfUnifOnBasefTopOpenf=unifTopUnifStf
16 15 1 cab classf|UnifStfUnifOnBasefTopOpenf=unifTopUnifStf
17 0 16 wceq wffUnifSp=f|UnifStfUnifOnBasefTopOpenf=unifTopUnifStf