Metamath Proof Explorer


Theorem df0op2

Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion df0op2 0hop=×0

Proof

Step Hyp Ref Expression
1 ho0f 0hop:
2 ffn 0hop:0hopFn
3 1 2 ax-mp 0hopFn
4 ho0val x0hopx=0
5 4 rgen x0hopx=0
6 fconstfv 0hop:00hopFnx0hopx=0
7 3 5 6 mpbir2an 0hop:0
8 ax-hv0cl 0
9 8 elexi 0V
10 9 fconst2 0hop:00hop=×0
11 7 10 mpbi 0hop=×0
12 df-ch0 0=0
13 12 xpeq2i ×0=×0
14 11 13 eqtr4i 0hop=×0