Metamath Proof Explorer


Theorem df2idl2

Description: Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses df2idl2.u U=2IdealR
df2idl2.b B=BaseR
df2idl2.t ·˙=R
Assertion df2idl2 RRingIUISubGrpRxByIx·˙yIy·˙xI

Proof

Step Hyp Ref Expression
1 df2idl2.u U=2IdealR
2 df2idl2.b B=BaseR
3 df2idl2.t ·˙=R
4 eqid LIdealR=LIdealR
5 eqid opprR=opprR
6 eqid LIdealopprR=LIdealopprR
7 4 5 6 1 2idlval U=LIdealRLIdealopprR
8 7 elin2 IUILIdealRILIdealopprR
9 8 a1i RRingIUILIdealRILIdealopprR
10 4 2 3 dflidl2 RRingILIdealRISubGrpRxByIx·˙yI
11 6 2 3 isridl RRingILIdealopprRISubGrpRxByIy·˙xI
12 10 11 anbi12d RRingILIdealRILIdealopprRISubGrpRxByIx·˙yIISubGrpRxByIy·˙xI
13 anandi ISubGrpRxByIx·˙yIxByIy·˙xIISubGrpRxByIx·˙yIISubGrpRxByIy·˙xI
14 r19.26-2 xByIx·˙yIy·˙xIxByIx·˙yIxByIy·˙xI
15 14 bicomi xByIx·˙yIxByIy·˙xIxByIx·˙yIy·˙xI
16 15 a1i RRingxByIx·˙yIxByIy·˙xIxByIx·˙yIy·˙xI
17 16 anbi2d RRingISubGrpRxByIx·˙yIxByIy·˙xIISubGrpRxByIx·˙yIy·˙xI
18 13 17 bitr3id RRingISubGrpRxByIx·˙yIISubGrpRxByIy·˙xIISubGrpRxByIx·˙yIy·˙xI
19 9 12 18 3bitrd RRingIUISubGrpRxByIx·˙yIy·˙xI