Metamath Proof Explorer


Theorem df3nandALT1

Description: The double nand expressed in terms of pure nand. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion df3nandALT1 φψχφψχψχ

Proof

Step Hyp Ref Expression
1 iman φψχψχ¬φ¬ψχψχ
2 imnan ψ¬χ¬ψχ
3 2 biimpi ψ¬χ¬ψχ
4 3 3 jca ψ¬χ¬ψχ¬ψχ
5 2 biimpri ¬ψχψ¬χ
6 5 adantl ¬ψχ¬ψχψ¬χ
7 4 6 impbii ψ¬χ¬ψχ¬ψχ
8 df-nan ψχ¬ψχ
9 8 8 anbi12i ψχψχ¬ψχ¬ψχ
10 7 9 bitr4i ψ¬χψχψχ
11 10 imbi2i φψ¬χφψχψχ
12 df-nan ψχψχ¬ψχψχ
13 12 anbi2i φψχψχφ¬ψχψχ
14 13 notbii ¬φψχψχ¬φ¬ψχψχ
15 1 11 14 3bitr4i φψ¬χ¬φψχψχ
16 df-3nand φψχφψ¬χ
17 df-nan φψχψχ¬φψχψχ
18 15 16 17 3bitr4i φψχφψχψχ