Metamath Proof Explorer


Theorem dfackm

Description: Equivalence of the Axiom of Choice and Maes' AC ackm . The proof consists of lemmas kmlem1 through kmlem16 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e., replacing dfac5 with biid ) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dfackm CHOICExyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v

Proof

Step Hyp Ref Expression
1 dfac5 CHOICExzxzzxwxzwzw=yzx∃!vvzy
2 eqid t|hxt=hxh=t|hxt=hxh
3 2 kmlem13 xzxzzxwxzwzw=yzx∃!vvzyx¬zxvzwxzwvzwyzxz∃!vvzy
4 kmlem8 ¬zxvzwxzwvzwyzxz∃!vvzyzxvzwxzwvzwy¬yxzx∃!vvzy
5 4 albii x¬zxvzwxzwvzwyzxz∃!vvzyxzxvzwxzwvzwy¬yxzx∃!vvzy
6 3 5 bitri xzxzzxwxzwzw=yzx∃!vvzyxzxvzwxzwvzwy¬yxzx∃!vvzy
7 df-ne yv¬y=v
8 7 bicomi ¬y=vyv
9 8 anbi2i vx¬y=vvxyv
10 9 anbi1i vx¬y=vzvvxyvzv
11 10 imbi2i zyvx¬y=vzvzyvxyvzv
12 biid zxvzvyuzuyu=vzxvzvyuzuyu=v
13 biid zx∃!vvzyzx∃!vvzy
14 11 12 13 kmlem16 zxvzwxzwvzwy¬yxzx∃!vvzyyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
15 14 albii xzxvzwxzwvzwy¬yxzx∃!vvzyxyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
16 6 15 bitri xzxzzxwxzwzw=yzx∃!vvzyxyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
17 1 16 bitri CHOICExyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v