Metamath Proof Explorer


Theorem dfac5

Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of Enderton p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dfac5 CHOICExzxzzxwxzwzw=yzx∃!vvzy

Proof

Step Hyp Ref Expression
1 dfac4 CHOICExffFnxwxwfww
2 neeq1 z=wzw
3 2 cbvralvw zxzwxw
4 3 anbi2i wxwfwwzxzwxwfwwwxw
5 r19.26 wxwfwwwwxwfwwwxw
6 4 5 bitr4i wxwfwwzxzwxwfwww
7 pm3.35 wwfwwfww
8 7 ancoms wfwwwfww
9 8 ralimi wxwfwwwwxfww
10 6 9 sylbi wxwfwwzxzwxfww
11 r19.26 wxfwwzwzw=wxfwwwxzwzw=
12 elin vzranfvzvranf
13 fvelrnb fFnxvranftxft=v
14 13 biimpac vranffFnxtxft=v
15 fveq2 w=tfw=ft
16 id w=tw=t
17 15 16 eleq12d w=tfwwftt
18 neeq2 w=tzwzt
19 ineq2 w=tzw=zt
20 19 eqeq1d w=tzw=zt=
21 18 20 imbi12d w=tzwzw=ztzt=
22 17 21 anbi12d w=tfwwzwzw=fttztzt=
23 22 rspcv txwxfwwzwzw=fttztzt=
24 minel fttzt=¬ftz
25 24 ex fttzt=¬ftz
26 25 imim2d fttztzt=zt¬ftz
27 26 imp fttztzt=zt¬ftz
28 27 necon4ad fttztzt=ftzz=t
29 eleq1 ft=vftzvz
30 29 biimpar ft=vvzftz
31 28 30 impel fttztzt=ft=vvzz=t
32 fveq2 z=tfz=ft
33 eqeq2 ft=vfz=ftfz=v
34 eqcom fz=vv=fz
35 33 34 bitrdi ft=vfz=ftv=fz
36 32 35 imbitrid ft=vz=tv=fz
37 36 ad2antrl fttztzt=ft=vvzz=tv=fz
38 31 37 mpd fttztzt=ft=vvzv=fz
39 38 exp32 fttztzt=ft=vvzv=fz
40 23 39 syl6com wxfwwzwzw=txft=vvzv=fz
41 40 com14 vztxft=vwxfwwzwzw=v=fz
42 41 rexlimdv vztxft=vwxfwwzwzw=v=fz
43 14 42 syl5 vzvranffFnxwxfwwzwzw=v=fz
44 43 expd vzvranffFnxwxfwwzwzw=v=fz
45 44 com4t fFnxwxfwwzwzw=vzvranfv=fz
46 45 imp4b fFnxwxfwwzwzw=vzvranfv=fz
47 12 46 biimtrid fFnxwxfwwzwzw=vzranfv=fz
48 11 47 sylan2br fFnxwxfwwwxzwzw=vzranfv=fz
49 48 anassrs fFnxwxfwwwxzwzw=vzranfv=fz
50 49 adantlr fFnxwxfwwzxwxzwzw=vzranfv=fz
51 fveq2 w=zfw=fz
52 id w=zw=z
53 51 52 eleq12d w=zfwwfzz
54 53 rspcv zxwxfwwfzz
55 fnfvelrn fFnxzxfzranf
56 55 expcom zxfFnxfzranf
57 54 56 anim12d zxwxfwwfFnxfzzfzranf
58 elin fzzranffzzfzranf
59 57 58 imbitrrdi zxwxfwwfFnxfzzranf
60 59 expd zxwxfwwfFnxfzzranf
61 60 com13 fFnxwxfwwzxfzzranf
62 61 imp31 fFnxwxfwwzxfzzranf
63 eleq1 v=fzvzranffzzranf
64 62 63 syl5ibrcom fFnxwxfwwzxv=fzvzranf
65 64 adantr fFnxwxfwwzxwxzwzw=v=fzvzranf
66 50 65 impbid fFnxwxfwwzxwxzwzw=vzranfv=fz
67 66 ex fFnxwxfwwzxwxzwzw=vzranfv=fz
68 67 alrimdv fFnxwxfwwzxwxzwzw=vvzranfv=fz
69 fvex fzV
70 eqeq2 h=fzv=hv=fz
71 70 bibi2d h=fzvzranfv=hvzranfv=fz
72 71 albidv h=fzvvzranfv=hvvzranfv=fz
73 69 72 spcev vvzranfv=fzhvvzranfv=h
74 eu6 ∃!vvzranfhvvzranfv=h
75 73 74 sylibr vvzranfv=fz∃!vvzranf
76 68 75 syl6 fFnxwxfwwzxwxzwzw=∃!vvzranf
77 76 ralimdva fFnxwxfwwzxwxzwzw=zx∃!vvzranf
78 77 ex fFnxwxfwwzxwxzwzw=zx∃!vvzranf
79 10 78 syl5 fFnxwxwfwwzxzzxwxzwzw=zx∃!vvzranf
80 79 expd fFnxwxwfwwzxzzxwxzwzw=zx∃!vvzranf
81 80 imp4b fFnxwxwfwwzxzzxwxzwzw=zx∃!vvzranf
82 vex fV
83 82 rnex ranfV
84 ineq2 y=ranfzy=zranf
85 84 eleq2d y=ranfvzyvzranf
86 85 eubidv y=ranf∃!vvzy∃!vvzranf
87 86 ralbidv y=ranfzx∃!vvzyzx∃!vvzranf
88 83 87 spcev zx∃!vvzranfyzx∃!vvzy
89 81 88 syl6 fFnxwxwfwwzxzzxwxzwzw=yzx∃!vvzy
90 89 exlimiv ffFnxwxwfwwzxzzxwxzwzw=yzx∃!vvzy
91 90 alimi xffFnxwxwfwwxzxzzxwxzwzw=yzx∃!vvzy
92 1 91 sylbi CHOICExzxzzxwxzwzw=yzx∃!vvzy
93 eqid u|uthu=t×t=u|uthu=t×t
94 eqid u|uthu=t×ty=u|uthu=t×ty
95 biid xzxzzxwxzwzw=yzx∃!vvzyxzxzzxwxzwzw=yzx∃!vvzy
96 93 94 95 dfac5lem5 xzxzzxwxzwzw=yzx∃!vvzyfwhwfww
97 96 alrimiv xzxzzxwxzwzw=yzx∃!vvzyhfwhwfww
98 dfac3 CHOICEhfwhwfww
99 97 98 sylibr xzxzzxwxzwzw=yzx∃!vvzyCHOICE
100 92 99 impbii CHOICExzxzzxwxzwzw=yzx∃!vvzy