Description: An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfacycgr1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-acycgr | |
|
2 | 2exanali | |
|
3 | df-ne | |
|
4 | 3 | anbi2i | |
5 | 4 | 2exbii | |
6 | 2 5 | xchnxbir | |
7 | 6 | abbii | |
8 | 1 7 | eqtri | |