Metamath Proof Explorer


Theorem dfadjliftmap2

Description: Alternate definition of the adjoined lift map. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dfadjliftmap2 Could not format assertion : No typesetting found for |- ( R AdjLiftMap A ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-adjliftmap Could not format ( R AdjLiftMap A ) = ( m e. dom ( ( R u. `' _E ) |` A ) |-> [ m ] ( ( R u. `' _E ) |` A ) ) : No typesetting found for |- ( R AdjLiftMap A ) = ( m e. dom ( ( R u. `' _E ) |` A ) |-> [ m ] ( ( R u. `' _E ) |` A ) ) with typecode |-
2 elinel1 m A dom R V m A
3 dmuncnvepres dom R E -1 A = A dom R V
4 2 3 eleq2s m dom R E -1 A m A
5 ecuncnvepres m A m R E -1 A = m m R
6 4 5 syl m dom R E -1 A m R E -1 A = m m R
7 6 mpteq2ia m dom R E -1 A m R E -1 A = m dom R E -1 A m m R
8 3 mpteq1i m dom R E -1 A m m R = m A dom R V m m R
9 1 7 8 3eqtri Could not format ( R AdjLiftMap A ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) : No typesetting found for |- ( R AdjLiftMap A ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) with typecode |-