| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-adjliftmap |
⊢ ( 𝑅 AdjLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ) |
| 2 |
|
elinel1 |
⊢ ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) → 𝑚 ∈ 𝐴 ) |
| 3 |
|
dmuncnvepres |
⊢ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) |
| 4 |
2 3
|
eleq2s |
⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
| 5 |
|
ecuncnvepres |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) → [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 7 |
6
|
mpteq2ia |
⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ) = ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 8 |
3
|
mpteq1i |
⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 9 |
1 7 8
|
3eqtri |
⊢ ( 𝑅 AdjLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |