| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-adjliftmap |
⊢ ( ( 𝑅 ⋉ ◡ E ) AdjLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) |
| 2 |
|
df-mpt |
⊢ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) } |
| 3 |
|
dmxrnuncnvepres |
⊢ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∖ { ∅ } ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↔ 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ) |
| 5 |
4
|
anbi1i |
⊢ ( ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ) |
| 6 |
|
eldifi |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑚 ∈ 𝐴 ) |
| 7 |
|
ecuncnvepres |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) ) |
| 9 |
|
ecxrncnvep2 |
⊢ ( 𝑚 ∈ V → [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 10 |
9
|
elv |
⊢ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) |
| 11 |
10
|
uneq2i |
⊢ ( 𝑚 ∪ [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 12 |
8 11
|
eqtrdi |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) → ( 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ↔ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 14 |
13
|
pm5.32i |
⊢ ( ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 15 |
5 14
|
bitri |
⊢ ( ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) ↔ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) ) |
| 16 |
15
|
opabbii |
⊢ { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ dom ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ∧ 𝑛 = [ 𝑚 ] ( ( ( 𝑅 ⋉ ◡ E ) ∪ ◡ E ) ↾ 𝐴 ) ) } = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) } |
| 17 |
1 2 16
|
3eqtri |
⊢ ( ( 𝑅 ⋉ ◡ E ) AdjLiftMap 𝐴 ) = { 〈 𝑚 , 𝑛 〉 ∣ ( 𝑚 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑛 = ( 𝑚 ∪ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) ) } |