| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-adjliftmap |
|- ( ( R |X. `' _E ) AdjLiftMap A ) = ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) |
| 2 |
|
df-mpt |
|- ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) = { <. m , n >. | ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) } |
| 3 |
|
dmxrnuncnvepres |
|- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A \ { (/) } ) |
| 4 |
3
|
eleq2i |
|- ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) <-> m e. ( A \ { (/) } ) ) |
| 5 |
4
|
anbi1i |
|- ( ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) ) |
| 6 |
|
eldifi |
|- ( m e. ( A \ { (/) } ) -> m e. A ) |
| 7 |
|
ecuncnvepres |
|- ( m e. A -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. [ m ] ( R |X. `' _E ) ) ) |
| 8 |
6 7
|
syl |
|- ( m e. ( A \ { (/) } ) -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. [ m ] ( R |X. `' _E ) ) ) |
| 9 |
|
ecxrncnvep2 |
|- ( m e. _V -> [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) ) |
| 10 |
9
|
elv |
|- [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) |
| 11 |
10
|
uneq2i |
|- ( m u. [ m ] ( R |X. `' _E ) ) = ( m u. ( [ m ] R X. m ) ) |
| 12 |
8 11
|
eqtrdi |
|- ( m e. ( A \ { (/) } ) -> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( m u. ( [ m ] R X. m ) ) ) |
| 13 |
12
|
eqeq2d |
|- ( m e. ( A \ { (/) } ) -> ( n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) <-> n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 14 |
13
|
pm5.32i |
|- ( ( m e. ( A \ { (/) } ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 15 |
5 14
|
bitri |
|- ( ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) <-> ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) ) |
| 16 |
15
|
opabbii |
|- { <. m , n >. | ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) /\ n = [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) } = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } |
| 17 |
1 2 16
|
3eqtri |
|- ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } |