Metamath Proof Explorer


Theorem dfaimafn

Description: Alternate definition of the image of a function, analogous to dfimafn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfaimafn FunFAdomFFA=y|xAF'''x=y

Proof

Step Hyp Ref Expression
1 dfima2 FA=y|xAxFy
2 ssel AdomFxAxdomF
3 funbrafvb FunFxdomFF'''x=yxFy
4 3 ex FunFxdomFF'''x=yxFy
5 2 4 syl9r FunFAdomFxAF'''x=yxFy
6 5 imp31 FunFAdomFxAF'''x=yxFy
7 6 rexbidva FunFAdomFxAF'''x=yxAxFy
8 7 abbidv FunFAdomFy|xAF'''x=y=y|xAxFy
9 1 8 eqtr4id FunFAdomFFA=y|xAF'''x=y