Metamath Proof Explorer


Theorem dfaimafn

Description: Alternate definition of the image of a function, analogous to dfimafn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfaimafn Fun F A dom F F A = y | x A F ''' x = y

Proof

Step Hyp Ref Expression
1 dfima2 F A = y | x A x F y
2 ssel A dom F x A x dom F
3 funbrafvb Fun F x dom F F ''' x = y x F y
4 3 ex Fun F x dom F F ''' x = y x F y
5 2 4 syl9r Fun F A dom F x A F ''' x = y x F y
6 5 imp31 Fun F A dom F x A F ''' x = y x F y
7 6 rexbidva Fun F A dom F x A F ''' x = y x A x F y
8 7 abbidv Fun F A dom F y | x A F ''' x = y = y | x A x F y
9 1 8 eqtr4id Fun F A dom F F A = y | x A F ''' x = y