Step |
Hyp |
Ref |
Expression |
1 |
|
dfima2 |
⊢ ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 } |
2 |
|
ssel |
⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹 ) ) |
3 |
|
funbrafvb |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ''' 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
4 |
3
|
ex |
⊢ ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹 ''' 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) |
5 |
2 4
|
syl9r |
⊢ ( Fun 𝐹 → ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ''' 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) ) |
6 |
5
|
imp31 |
⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ''' 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
7 |
6
|
rexbidva |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
8 |
7
|
abbidv |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 } ) |
9 |
1 8
|
eqtr4id |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝑦 } ) |