| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfima2 | ⊢ ( 𝐹  “  𝐴 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑥 𝐹 𝑦 } | 
						
							| 2 |  | ssel | ⊢ ( 𝐴  ⊆  dom  𝐹  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 3 |  | funbrafvb | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  dom  𝐹 )  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  𝑥 𝐹 𝑦 ) ) | 
						
							| 4 | 3 | ex | ⊢ ( Fun  𝐹  →  ( 𝑥  ∈  dom  𝐹  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  𝑥 𝐹 𝑦 ) ) ) | 
						
							| 5 | 2 4 | syl9r | ⊢ ( Fun  𝐹  →  ( 𝐴  ⊆  dom  𝐹  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  𝑥 𝐹 𝑦 ) ) ) ) | 
						
							| 6 | 5 | imp31 | ⊢ ( ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  𝑥 𝐹 𝑦 ) ) | 
						
							| 7 | 6 | rexbidva | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝑦  ↔  ∃ 𝑥  ∈  𝐴 𝑥 𝐹 𝑦 ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝑦 }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑥 𝐹 𝑦 } ) | 
						
							| 9 | 1 8 | eqtr4id | ⊢ ( ( Fun  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝐹  “  𝐴 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝑦 } ) |