Step |
Hyp |
Ref |
Expression |
1 |
|
dfaimafn |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝑦 } ) |
2 |
|
iunab |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝑦 } |
3 |
1 2
|
eqtr4di |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } ) |
4 |
|
df-sn |
⊢ { ( 𝐹 ''' 𝑥 ) } = { 𝑦 ∣ 𝑦 = ( 𝐹 ''' 𝑥 ) } |
5 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐹 ''' 𝑥 ) ↔ ( 𝐹 ''' 𝑥 ) = 𝑦 ) |
6 |
5
|
abbii |
⊢ { 𝑦 ∣ 𝑦 = ( 𝐹 ''' 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } |
7 |
4 6
|
eqtri |
⊢ { ( 𝐹 ''' 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } |
8 |
7
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → { ( 𝐹 ''' 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } ) |
9 |
8
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 { ( 𝐹 ''' 𝑥 ) } = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ''' 𝑥 ) = 𝑦 } |
10 |
3 9
|
eqtr4di |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 { ( 𝐹 ''' 𝑥 ) } ) |