Metamath Proof Explorer


Theorem dfaimafn2

Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfaimafn2 Fun F A dom F F A = x A F ''' x

Proof

Step Hyp Ref Expression
1 dfaimafn Fun F A dom F F A = y | x A F ''' x = y
2 iunab x A y | F ''' x = y = y | x A F ''' x = y
3 1 2 eqtr4di Fun F A dom F F A = x A y | F ''' x = y
4 df-sn F ''' x = y | y = F ''' x
5 eqcom y = F ''' x F ''' x = y
6 5 abbii y | y = F ''' x = y | F ''' x = y
7 4 6 eqtri F ''' x = y | F ''' x = y
8 7 a1i x A F ''' x = y | F ''' x = y
9 8 iuneq2i x A F ''' x = x A y | F ''' x = y
10 3 9 eqtr4di Fun F A dom F F A = x A F ''' x