Metamath Proof Explorer


Theorem dfaimafn2

Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion dfaimafn2
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { ( F ''' x ) } )

Proof

Step Hyp Ref Expression
1 dfaimafn
 |-  ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ''' x ) = y } )
2 iunab
 |-  U_ x e. A { y | ( F ''' x ) = y } = { y | E. x e. A ( F ''' x ) = y }
3 1 2 eqtr4di
 |-  ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { y | ( F ''' x ) = y } )
4 df-sn
 |-  { ( F ''' x ) } = { y | y = ( F ''' x ) }
5 eqcom
 |-  ( y = ( F ''' x ) <-> ( F ''' x ) = y )
6 5 abbii
 |-  { y | y = ( F ''' x ) } = { y | ( F ''' x ) = y }
7 4 6 eqtri
 |-  { ( F ''' x ) } = { y | ( F ''' x ) = y }
8 7 a1i
 |-  ( x e. A -> { ( F ''' x ) } = { y | ( F ''' x ) = y } )
9 8 iuneq2i
 |-  U_ x e. A { ( F ''' x ) } = U_ x e. A { y | ( F ''' x ) = y }
10 3 9 eqtr4di
 |-  ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { ( F ''' x ) } )