| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfima2 |  |-  ( F " A ) = { y | E. x e. A x F y } | 
						
							| 2 |  | ssel |  |-  ( A C_ dom F -> ( x e. A -> x e. dom F ) ) | 
						
							| 3 |  | funbrafvb |  |-  ( ( Fun F /\ x e. dom F ) -> ( ( F ''' x ) = y <-> x F y ) ) | 
						
							| 4 | 3 | ex |  |-  ( Fun F -> ( x e. dom F -> ( ( F ''' x ) = y <-> x F y ) ) ) | 
						
							| 5 | 2 4 | syl9r |  |-  ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ''' x ) = y <-> x F y ) ) ) ) | 
						
							| 6 | 5 | imp31 |  |-  ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ''' x ) = y <-> x F y ) ) | 
						
							| 7 | 6 | rexbidva |  |-  ( ( Fun F /\ A C_ dom F ) -> ( E. x e. A ( F ''' x ) = y <-> E. x e. A x F y ) ) | 
						
							| 8 | 7 | abbidv |  |-  ( ( Fun F /\ A C_ dom F ) -> { y | E. x e. A ( F ''' x ) = y } = { y | E. x e. A x F y } ) | 
						
							| 9 | 1 8 | eqtr4id |  |-  ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ''' x ) = y } ) |