Metamath Proof Explorer


Theorem dfcoll2

Description: Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Assertion dfcoll2 FCollA=xAScotty|xFy

Proof

Step Hyp Ref Expression
1 df-coll FCollA=xAScottFx
2 imasng xAFx=y|xFy
3 2 scotteqd xAScottFx=Scotty|xFy
4 3 iuneq2i xAScottFx=xAScotty|xFy
5 1 4 eqtri FCollA=xAScotty|xFy