Metamath Proof Explorer


Theorem dfcoss2

Description: Alternate definition of the class of cosets by R : x and y are cosets by R iff there exists a set u such that both x and y are are elements of the R -coset of u (see also the comment of dfec2 ). R is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018)

Ref Expression
Assertion dfcoss2 R = x y | u x u R y u R

Proof

Step Hyp Ref Expression
1 df-coss R = x y | u u R x u R y
2 elecALTV u V x V x u R u R x
3 2 el2v x u R u R x
4 elecALTV u V y V y u R u R y
5 4 el2v y u R u R y
6 3 5 anbi12i x u R y u R u R x u R y
7 6 exbii u x u R y u R u u R x u R y
8 7 opabbii x y | u x u R y u R = x y | u u R x u R y
9 1 8 eqtr4i R = x y | u x u R y u R