Metamath Proof Explorer


Theorem dff14b

Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion dff14b F:A1-1BF:ABxAyAxFxFy

Proof

Step Hyp Ref Expression
1 dff14a F:A1-1BF:ABxAyAxyFxFy
2 necom xyyx
3 2 imbi1i xyFxFyyxFxFy
4 3 ralbii yAxyFxFyyAyxFxFy
5 raldifsnb yAyxFxFyyAxFxFy
6 4 5 bitri yAxyFxFyyAxFxFy
7 6 ralbii xAyAxyFxFyxAyAxFxFy
8 7 anbi2i F:ABxAyAxyFxFyF:ABxAyAxFxFy
9 1 8 bitri F:A1-1BF:ABxAyAxFxFy