Metamath Proof Explorer


Theorem dff1o3

Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion dff1o3 F:A1-1 ontoBF:AontoBFunF-1

Proof

Step Hyp Ref Expression
1 3anan32 FFnAFunF-1ranF=BFFnAranF=BFunF-1
2 dff1o2 F:A1-1 ontoBFFnAFunF-1ranF=B
3 df-fo F:AontoBFFnAranF=B
4 3 anbi1i F:AontoBFunF-1FFnAranF=BFunF-1
5 1 2 4 3bitr4i F:A1-1 ontoBF:AontoBFunF-1