Metamath Proof Explorer


Theorem dff1o4

Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion dff1o4 F:A1-1 ontoBFFnAF-1FnB

Proof

Step Hyp Ref Expression
1 dff1o2 F:A1-1 ontoBFFnAFunF-1ranF=B
2 3anass FFnAFunF-1ranF=BFFnAFunF-1ranF=B
3 df-rn ranF=domF-1
4 3 eqeq1i ranF=BdomF-1=B
5 4 anbi2i FunF-1ranF=BFunF-1domF-1=B
6 df-fn F-1FnBFunF-1domF-1=B
7 5 6 bitr4i FunF-1ranF=BF-1FnB
8 7 anbi2i FFnAFunF-1ranF=BFFnAF-1FnB
9 1 2 8 3bitri F:A1-1 ontoBFFnAF-1FnB