Metamath Proof Explorer


Theorem dff1o5

Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion dff1o5 F:A1-1 ontoBF:A1-1BranF=B

Proof

Step Hyp Ref Expression
1 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
2 dffo2 F:AontoBF:ABranF=B
3 f1f F:A1-1BF:AB
4 3 biantrurd F:A1-1BranF=BF:ABranF=B
5 2 4 bitr4id F:A1-1BF:AontoBranF=B
6 5 pm5.32i F:A1-1BF:AontoBF:A1-1BranF=B
7 1 6 bitri F:A1-1 ontoBF:A1-1BranF=B