Metamath Proof Explorer


Theorem dff2

Description: Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007)

Ref Expression
Assertion dff2 F:ABFFnAFA×B

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 fssxp F:ABFA×B
3 1 2 jca F:ABFFnAFA×B
4 rnss FA×BranFranA×B
5 rnxpss ranA×BB
6 4 5 sstrdi FA×BranFB
7 6 anim2i FFnAFA×BFFnAranFB
8 df-f F:ABFFnAranFB
9 7 8 sylibr FFnAFA×BF:AB
10 3 9 impbii F:ABFFnAFA×B