Metamath Proof Explorer


Theorem dffr2

Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) Avoid ax-10 , ax-11 , ax-12 , but use ax-8 . (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion dffr2 RFrAxxAxyxzx|zRy=

Proof

Step Hyp Ref Expression
1 df-fr RFrAxxAxyxwx¬wRy
2 breq1 z=wzRywRy
3 2 rabeq0w zx|zRy=wx¬wRy
4 3 rexbii yxzx|zRy=yxwx¬wRy
5 4 imbi2i xAxyxzx|zRy=xAxyxwx¬wRy
6 5 albii xxAxyxzx|zRy=xxAxyxwx¬wRy
7 1 6 bitr4i RFrAxxAxyxzx|zRy=