Metamath Proof Explorer


Theorem dffr3

Description: Alternate definition of well-founded relation. Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 23-Apr-2004) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dffr3 RFrAxxAxyxxR-1y=

Proof

Step Hyp Ref Expression
1 dffr2 RFrAxxAxyxzx|zRy=
2 iniseg yVR-1y=z|zRy
3 2 elv R-1y=z|zRy
4 3 ineq2i xR-1y=xz|zRy
5 dfrab3 zx|zRy=xz|zRy
6 4 5 eqtr4i xR-1y=zx|zRy
7 6 eqeq1i xR-1y=zx|zRy=
8 7 rexbii yxxR-1y=yxzx|zRy=
9 8 imbi2i xAxyxxR-1y=xAxyxzx|zRy=
10 9 albii xxAxyxxR-1y=xxAxyxzx|zRy=
11 1 10 bitr4i RFrAxxAxyxxR-1y=