Metamath Proof Explorer


Theorem dffun2OLD

Description: Obsolete version of dffun2 as of 29-Dec-2024. (Contributed by NM, 29-Dec-1996) Avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffun2OLD FunARelAxyzxAyxAzy=z

Proof

Step Hyp Ref Expression
1 df-fun FunARelAAA-1I
2 cotrg AA-1IyxzyA-1xxAzyIz
3 alcom yxzyA-1xxAzyIzxyzyA-1xxAzyIz
4 vex yV
5 vex xV
6 4 5 brcnv yA-1xxAy
7 6 anbi1i yA-1xxAzxAyxAz
8 vex zV
9 8 ideq yIzy=z
10 7 9 imbi12i yA-1xxAzyIzxAyxAzy=z
11 10 3albii xyzyA-1xxAzyIzxyzxAyxAzy=z
12 3 11 bitri yxzyA-1xxAzyIzxyzxAyxAzy=z
13 2 12 bitri AA-1IxyzxAyxAzy=z
14 13 anbi2i RelAAA-1IRelAxyzxAyxAzy=z
15 1 14 bitri FunARelAxyzxAyxAzy=z