Metamath Proof Explorer


Theorem dffun3

Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996) (Proof shortened by SN, 19-Dec-2024)

Ref Expression
Assertion dffun3 FunARelAxzyxAyy=z

Proof

Step Hyp Ref Expression
1 dffun6 FunARelAx*yxAy
2 df-mo *yxAyzyxAyy=z
3 2 albii x*yxAyxzyxAyy=z
4 3 anbi2i RelAx*yxAyRelAxzyxAyy=z
5 1 4 bitri FunARelAxzyxAyy=z