Metamath Proof Explorer


Theorem dffun3OLD

Description: Obsolete version of dffun3 as of 19-Dec-2024. Alternate definition of function. (Contributed by NM, 29-Dec-1996) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffun3OLD FunARelAxzyxAyy=z

Proof

Step Hyp Ref Expression
1 dffun2 FunARelAxyzxAyxAzy=z
2 breq2 y=zxAyxAz
3 2 mo4 *yxAyyzxAyxAzy=z
4 df-mo *yxAyzyxAyy=z
5 3 4 bitr3i yzxAyxAzy=zzyxAyy=z
6 5 albii xyzxAyxAzy=zxzyxAyy=z
7 6 anbi2i RelAxyzxAyxAzy=zRelAxzyxAyy=z
8 1 7 bitri FunARelAxzyxAyy=z