Metamath Proof Explorer


Theorem dffun4

Description: Alternate definition of a function. Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dffun4 FunARelAxyzxyAxzAy=z

Proof

Step Hyp Ref Expression
1 dffun2 FunARelAxyzxAyxAzy=z
2 df-br xAyxyA
3 df-br xAzxzA
4 2 3 anbi12i xAyxAzxyAxzA
5 4 imbi1i xAyxAzy=zxyAxzAy=z
6 5 albii zxAyxAzy=zzxyAxzAy=z
7 6 2albii xyzxAyxAzy=zxyzxyAxzAy=z
8 7 anbi2i RelAxyzxAyxAzy=zRelAxyzxyAxzAy=z
9 1 8 bitri FunARelAxyzxyAxzAy=z