Metamath Proof Explorer


Theorem dfhnorm2

Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in Beran p. 96. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion dfhnorm2 norm=xxihx

Proof

Step Hyp Ref Expression
1 df-hnorm norm=xdomdomihxihx
2 ax-hfi ih:×
3 2 fdmi domih=×
4 3 dmeqi domdomih=dom×
5 dmxpid dom×=
6 4 5 eqtr2i =domdomih
7 6 mpteq1i xxihx=xdomdomihxihx
8 1 7 eqtr4i norm=xxihx