Metamath Proof Explorer

Theorem normf

Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion normf norm :


Step Hyp Ref Expression
1 dfhnorm2 norm = x x ih x
2 hiidrcl x x ih x
3 hiidge0 x 0 x ih x
4 2 3 resqrtcld x x ih x
5 1 4 fmpti norm :