Metamath Proof Explorer


Theorem normf

Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion normf norm:

Proof

Step Hyp Ref Expression
1 dfhnorm2 norm=xxihx
2 hiidrcl xxihx
3 hiidge0 x0xihx
4 2 3 resqrtcld xxihx
5 1 4 fmpti norm: