Metamath Proof Explorer


Theorem dfif5

Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false (see also ab0orv ). (Contributed by Gérard Lang, 18-Aug-2013)

Ref Expression
Hypothesis dfif3.1 C=x|φ
Assertion dfif5 ifφAB=ABABCBAVC

Proof

Step Hyp Ref Expression
1 dfif3.1 C=x|φ
2 inindi ABAVCBC=ABAVCABBC
3 1 dfif4 ifφAB=ABAVCBC
4 undir ABABCBAVC=AABCBAVCBABCBAVC
5 unidm AA=A
6 5 uneq1i AABVC=ABVC
7 unass AABVC=AABVC
8 undi ABVC=ABAVC
9 6 7 8 3eqtr3ri ABAVC=AABVC
10 undi AABC=AABAC
11 undifabs AAB=A
12 11 ineq1i AABAC=AAC
13 inabs AAC=A
14 10 12 13 3eqtri AABC=A
15 undif2 ABA=AB
16 15 ineq1i ABAAVC=ABAVC
17 undi ABAVC=ABAAVC
18 16 17 8 3eqtr4i ABAVC=ABVC
19 14 18 uneq12i AABCABAVC=AABVC
20 9 19 eqtr4i ABAVC=AABCABAVC
21 unundi AABCBAVC=AABCABAVC
22 20 21 eqtr4i ABAVC=AABCBAVC
23 unass ACBB=ACBB
24 undi BAC=BABC
25 uncom ACB=BAC
26 undif2 BAB=BA
27 26 ineq1i BABBC=BABC
28 24 25 27 3eqtr4i ACB=BABBC
29 undi BABC=BABBC
30 28 29 eqtr4i ACB=BABC
31 undi BBAVC=BBABVC
32 undifabs BBA=B
33 32 ineq1i BBABVC=BBVC
34 inabs BBVC=B
35 31 33 34 3eqtrri B=BBAVC
36 30 35 uneq12i ACBB=BABCBBAVC
37 unidm BB=B
38 37 uneq2i ACBB=ACB
39 23 36 38 3eqtr3ri ACB=BABCBBAVC
40 uncom BC=CB
41 40 ineq2i ABBC=ABCB
42 undir ACB=ABCB
43 41 42 eqtr4i ABBC=ACB
44 unundi BABCBAVC=BABCBBAVC
45 39 43 44 3eqtr4i ABBC=BABCBAVC
46 22 45 ineq12i ABAVCABBC=AABCBAVCBABCBAVC
47 4 46 eqtr4i ABABCBAVC=ABAVCABBC
48 2 3 47 3eqtr4i ifφAB=ABABCBAVC