Metamath Proof Explorer


Theorem dfif5

Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false (see also ab0orv ). (Contributed by Gérard Lang, 18-Aug-2013)

Ref Expression
Hypothesis dfif3.1 C = x | φ
Assertion dfif5 if φ A B = A B A B C B A V C

Proof

Step Hyp Ref Expression
1 dfif3.1 C = x | φ
2 inindi A B A V C B C = A B A V C A B B C
3 1 dfif4 if φ A B = A B A V C B C
4 undir A B A B C B A V C = A A B C B A V C B A B C B A V C
5 unidm A A = A
6 5 uneq1i A A B V C = A B V C
7 unass A A B V C = A A B V C
8 undi A B V C = A B A V C
9 6 7 8 3eqtr3ri A B A V C = A A B V C
10 undi A A B C = A A B A C
11 undifabs A A B = A
12 11 ineq1i A A B A C = A A C
13 inabs A A C = A
14 10 12 13 3eqtri A A B C = A
15 undif2 A B A = A B
16 15 ineq1i A B A A V C = A B A V C
17 undi A B A V C = A B A A V C
18 16 17 8 3eqtr4i A B A V C = A B V C
19 14 18 uneq12i A A B C A B A V C = A A B V C
20 9 19 eqtr4i A B A V C = A A B C A B A V C
21 unundi A A B C B A V C = A A B C A B A V C
22 20 21 eqtr4i A B A V C = A A B C B A V C
23 unass A C B B = A C B B
24 undi B A C = B A B C
25 uncom A C B = B A C
26 undif2 B A B = B A
27 26 ineq1i B A B B C = B A B C
28 24 25 27 3eqtr4i A C B = B A B B C
29 undi B A B C = B A B B C
30 28 29 eqtr4i A C B = B A B C
31 undi B B A V C = B B A B V C
32 undifabs B B A = B
33 32 ineq1i B B A B V C = B B V C
34 inabs B B V C = B
35 31 33 34 3eqtrri B = B B A V C
36 30 35 uneq12i A C B B = B A B C B B A V C
37 unidm B B = B
38 37 uneq2i A C B B = A C B
39 23 36 38 3eqtr3ri A C B = B A B C B B A V C
40 uncom B C = C B
41 40 ineq2i A B B C = A B C B
42 undir A C B = A B C B
43 41 42 eqtr4i A B B C = A C B
44 unundi B A B C B A V C = B A B C B B A V C
45 39 43 44 3eqtr4i A B B C = B A B C B A V C
46 22 45 ineq12i A B A V C A B B C = A A B C B A V C B A B C B A V C
47 4 46 eqtr4i A B A B C B A V C = A B A V C A B B C
48 2 3 47 3eqtr4i if φ A B = A B A B C B A V C