Metamath Proof Explorer


Theorem dfif6

Description: An alternate definition of the conditional operator df-if as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion dfif6 ifφAB=xA|φxB|¬φ

Proof

Step Hyp Ref Expression
1 eleq1w x=yxAyA
2 1 anbi1d x=yxAφyAφ
3 eleq1w x=yxByB
4 3 anbi1d x=yxB¬φyB¬φ
5 2 4 unabw x|xAφx|xB¬φ=y|yAφyB¬φ
6 df-rab xA|φ=x|xAφ
7 df-rab xB|¬φ=x|xB¬φ
8 6 7 uneq12i xA|φxB|¬φ=x|xAφx|xB¬φ
9 df-if ifφAB=y|yAφyB¬φ
10 5 8 9 3eqtr4ri ifφAB=xA|φxB|¬φ