Metamath Proof Explorer


Theorem dflim6

Description: A limit ordinal is a non-zero ordinal which is not a succesor ordinal. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion dflim6 LimAOrdAA¬bOnA=sucb

Proof

Step Hyp Ref Expression
1 ioran ¬A=bOnA=sucb¬A=¬bOnA=sucb
2 df-ne A¬A=
3 2 anbi1i A¬bOnA=sucb¬A=¬bOnA=sucb
4 1 3 bitr4i ¬A=bOnA=sucbA¬bOnA=sucb
5 4 anbi2i OrdA¬A=bOnA=sucbOrdAA¬bOnA=sucb
6 dflim3 LimAOrdA¬A=bOnA=sucb
7 3anass OrdAA¬bOnA=sucbOrdAA¬bOnA=sucb
8 5 6 7 3bitr4i LimAOrdAA¬bOnA=sucb