Metamath Proof Explorer


Theorem dfmoeu

Description: An elementary proof of moeu in disguise, connecting an expression characterizing uniqueness ( df-mo ) to that of existential uniqueness ( eu6 ). No particular order of definition is required, as one can be derived from the other. This is shown here and in dfeumo . (Contributed by Wolf Lammen, 27-May-2019)

Ref Expression
Assertion dfmoeu xφyxφx=yyxφx=y

Proof

Step Hyp Ref Expression
1 alnex x¬φ¬xφ
2 pm2.21 ¬φφx=y
3 2 alimi x¬φxφx=y
4 1 3 sylbir ¬xφxφx=y
5 4 19.8ad ¬xφyxφx=y
6 biimp φx=yφx=y
7 6 alimi xφx=yxφx=y
8 7 eximi yxφx=yyxφx=y
9 5 8 ja xφyxφx=yyxφx=y
10 nfia1 xxφx=yxφx=y
11 id φφ
12 ax12v x=yφxx=yφ
13 12 com12 φx=yxx=yφ
14 11 13 embantd φφx=yxx=yφ
15 14 spsd φxφx=yxx=yφ
16 15 ancld φxφx=yxφx=yxx=yφ
17 albiim xφx=yxφx=yxx=yφ
18 16 17 imbitrrdi φxφx=yxφx=y
19 10 18 exlimi xφxφx=yxφx=y
20 19 eximdv xφyxφx=yyxφx=y
21 20 com12 yxφx=yxφyxφx=y
22 9 21 impbii xφyxφx=yyxφx=y