Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Alternate definitions using the "divides" relation
dfodd3
Next ⟩
iseven2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfodd3
Description:
Alternate definition for odd numbers.
(Contributed by
AV
, 18-Jun-2020)
Ref
Expression
Assertion
dfodd3
⊢
Odd
=
z
∈
ℤ
|
¬
2
∥
z
Proof
Step
Hyp
Ref
Expression
1
dfodd6
⊢
Odd
=
z
∈
ℤ
|
∃
i
∈
ℤ
z
=
2
⁢
i
+
1
2
eqcom
⊢
z
=
2
⁢
i
+
1
↔
2
⁢
i
+
1
=
z
3
2
a1i
⊢
z
∈
ℤ
∧
i
∈
ℤ
→
z
=
2
⁢
i
+
1
↔
2
⁢
i
+
1
=
z
4
3
rexbidva
⊢
z
∈
ℤ
→
∃
i
∈
ℤ
z
=
2
⁢
i
+
1
↔
∃
i
∈
ℤ
2
⁢
i
+
1
=
z
5
odd2np1
⊢
z
∈
ℤ
→
¬
2
∥
z
↔
∃
i
∈
ℤ
2
⁢
i
+
1
=
z
6
4
5
bitr4d
⊢
z
∈
ℤ
→
∃
i
∈
ℤ
z
=
2
⁢
i
+
1
↔
¬
2
∥
z
7
6
rabbiia
⊢
z
∈
ℤ
|
∃
i
∈
ℤ
z
=
2
⁢
i
+
1
=
z
∈
ℤ
|
¬
2
∥
z
8
1
7
eqtri
⊢
Odd
=
z
∈
ℤ
|
¬
2
∥
z