Metamath Proof Explorer


Theorem dfodd3

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd3 Odd = z | ¬ 2 z

Proof

Step Hyp Ref Expression
1 dfodd6 Odd = z | i z = 2 i + 1
2 eqcom z = 2 i + 1 2 i + 1 = z
3 2 a1i z i z = 2 i + 1 2 i + 1 = z
4 3 rexbidva z i z = 2 i + 1 i 2 i + 1 = z
5 odd2np1 z ¬ 2 z i 2 i + 1 = z
6 4 5 bitr4d z i z = 2 i + 1 ¬ 2 z
7 6 rabbiia z | i z = 2 i + 1 = z | ¬ 2 z
8 1 7 eqtri Odd = z | ¬ 2 z