Metamath Proof Explorer


Theorem dfpart2

Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfpart2 Could not format assertion : No typesetting found for |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-part Could not format ( R Part A <-> ( Disj R /\ R DomainQs A ) ) : No typesetting found for |- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) with typecode |-
2 df-dmqs RDomainQsAdomR/R=A
3 2 anbi2i DisjRRDomainQsADisjRdomR/R=A
4 1 3 bitri Could not format ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) : No typesetting found for |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) with typecode |-