Metamath Proof Explorer


Theorem dfpss2

Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion dfpss2 A B A B ¬ A = B

Proof

Step Hyp Ref Expression
1 df-pss A B A B A B
2 df-ne A B ¬ A = B
3 2 anbi2i A B A B A B ¬ A = B
4 1 3 bitri A B A B ¬ A = B