Metamath Proof Explorer


Theorem dfres2

Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Assertion dfres2 RA=xy|xAxRy

Proof

Step Hyp Ref Expression
1 relres RelRA
2 relopabv Relxy|xAxRy
3 vex zV
4 vex wV
5 eleq1w x=zxAzA
6 breq1 x=zxRyzRy
7 5 6 anbi12d x=zxAxRyzAzRy
8 breq2 y=wzRyzRw
9 8 anbi2d y=wzAzRyzAzRw
10 3 4 7 9 opelopab zwxy|xAxRyzAzRw
11 4 brresi zRAwzAzRw
12 df-br zRAwzwRA
13 10 11 12 3bitr2ri zwRAzwxy|xAxRy
14 1 2 13 eqrelriiv RA=xy|xAxRy