Metamath Proof Explorer


Theorem dfrnf

Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses dfrnf.1 _xA
dfrnf.2 _yA
Assertion dfrnf ranA=y|xxAy

Proof

Step Hyp Ref Expression
1 dfrnf.1 _xA
2 dfrnf.2 _yA
3 dfrn2 ranA=w|vvAw
4 nfcv _xv
5 nfcv _xw
6 4 1 5 nfbr xvAw
7 nfv vxAw
8 breq1 v=xvAwxAw
9 6 7 8 cbvexv1 vvAwxxAw
10 9 abbii w|vvAw=w|xxAw
11 nfcv _yx
12 nfcv _yw
13 11 2 12 nfbr yxAw
14 13 nfex yxxAw
15 nfv wxxAy
16 breq2 w=yxAwxAy
17 16 exbidv w=yxxAwxxAy
18 14 15 17 cbvabw w|xxAw=y|xxAy
19 3 10 18 3eqtri ranA=y|xxAy