Metamath Proof Explorer


Theorem dfse2

Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dfse2 RSeAxAAR-1xV

Proof

Step Hyp Ref Expression
1 df-se RSeAxAyA|yRxV
2 dfrab3 yA|yRx=Ay|yRx
3 iniseg xVR-1x=y|yRx
4 3 elv R-1x=y|yRx
5 4 ineq2i AR-1x=Ay|yRx
6 2 5 eqtr4i yA|yRx=AR-1x
7 6 eleq1i yA|yRxVAR-1xV
8 7 ralbii xAyA|yRxVxAAR-1xV
9 1 8 bitri RSeAxAAR-1xV